Меню раздела

Векторный анализ в ортогональных криволинейных системах координат, в безкоординатной записи и тензорных обозначениях. (Бакалавриат). (Магистратура). Учебное пособие

код 668887
Год издания: 2023 г.
ISBN: 978-5-466-02179-0
Дисциплина: Физика
Издательство: Русайнс
Страниц: 126
Вид издания: Учебное пособие
Оптовая цена: 790 руб.
Купить в интернет-магазине

Книга размещена в базе
Пособие предназначено для студентов младших курсов физических специальностей технических и классических университетов. В нем изложены вопросы векторного анализа и тензорной алгебры, которые наиболее часто встречаются в различных курсах общей и теоретической физики. Изложение ведется в евклидовом пространстве таким образом, чтобы дать читателю с минимальной математической подготовкой представление о пространственной кривой, скалярном, векторном и тензорном полях, правилах употребления оператора Гамильтона «набла» при без координатной записи физических выражений, использовании
координатной формы записи линейных и нелинейных (квадратичных) дифференциальных выражений в ортогональных криволинейных координатах, основах тензорной алгебры, записи и использовании дифференциальных векторных операций первого и второго порядков в тензорной форме. Большое внимание уделено методам решения задач. Предлагается значительное количество (полторы сотни)  задач и разобранных примеров. Изучив книгу, студент будет знать элементы дифференциальной геометрии и наиболее употребительные системы ортогональных криволинейных координат, дифференциальный векторный оператор Гамильтона и физический смысл операций градиента скалярной функции, дивергенции и ротора векторной функции, а также дифференциальные векторные операции второго порядка по оператору Гамильтона (типа ротор ротора, градиент дивергенции или оператор Лапласа от векторной функции), тензорную алгебру, без координатную и тензорную запись дифференциальных векторных операций. Будет уметь пользоваться операциями дифференциального векторного анализа первого и второго порядков по оператору Гамильтона в координатной, без координатной, тензорной формах и правилами тензорной алгебры. Будет владеть математическим аппаратом дифференциального векторного анализа и тензорной алгеброй.
Григорьев, А. И., Векторный анализ в ортогональных криволинейных системах координат, в безкоординатной записи и тензорных обозначениях : учебное пособие / А. И. Григорьев, С. О. Ширяева.

Математика. Статистика

Забыли пароль? Регистрация
Если вы являетесь действующим автором издательства, для получения логина и пароля для входа в Личный кабинет направьте запрос на адрес электронной почты info-avtor@knorus.ru

Если вы еще не являетесь автором издательства, но хотите им стать, заполните авторскую заявку.